
გლობალიზაცია და ბიზნესი #15, 2023 GLOBALIZATION AND BUSINESS #15, 2023

GLOBALIZATION AND BUSINESS #15, 2023 49

https://doi.org/10.35945/gb.2023.15.004

SYNTHESIS OF CONTEMPORARY APPROACHES SYNTHESIS OF CONTEMPORARY APPROACHES 
USED IN THE DEVELOPMENT OF THE CLIENT-SIDE USED IN THE DEVELOPMENT OF THE CLIENT-SIDE 
IN TECHNOLOGICAL PROJECTSIN TECHNOLOGICAL PROJECTS

BESIKI TABATADZE | GIORGI ASANIDZE
Associate Professor, European University, GeorgiaAssociate Professor, European University, Georgia

GIORGI ASANIDZE 
Master, Georgian American University, GeorgiaMaster, Georgian American University, Georgia

ABSTRACT. The advancement of modern technologies and the evoluƟ on of the web have led to a mulƟ tude of 
technological innovaƟ ons. Concurrently, web projects have become increasingly diverse and iteraƟ ve. The emer-
gence of complex systems has presented challenges that exisƟ ng approaches cannot adequately address, thereby 
necessitaƟ ng the development of novel architectures, technologies, and methodologies. Notably, adopƟ ng micro-
service architecture has eff ecƟ vely resolved issues encountered in large-scale projects and signifi cantly enhanced 
their manageability and fl exibility. Similarly, in response to the requirements of client-side applicaƟ ons, a demand 
for adopƟ ng a novel architectural approach has arisen.

The work presents the usefulness of using Monorepo and Micro Front-end architecture in technological 
projects and private web development in a single workspace. This method is suitable for the development of 
large-scale, complex projects. The architecture of client-side Angular and server-side NestJS technologies will 
be discussed in this article. Huge corporations such as Google, Facebook, and others employ these tactics. 
The paper clearly demonstrates why this architecture is the ideal answer for online projects and the benefits 
it provides developers over other existing and experienced alternatives. The work is useful both theoretically 
and practically.

KEYWORDS AND PHRASES: KEYWORDS AND PHRASES: TECHNOLOGY PROJECT MANAGEMENT, PROJECT DEVELOPMENT AR-TECHNOLOGY PROJECT MANAGEMENT, PROJECT DEVELOPMENT AR-
CHITECTURE, WEB TECHNOLOGIES, CLIENT-SIDE TECHNOLOGIES.CHITECTURE, WEB TECHNOLOGIES, CLIENT-SIDE TECHNOLOGIES.

INTRODUCTION

Recently, the function of programming has been 
expanding as software products have become more 
complicated and large-scale. In this instance, prac-
tical project architecture is critical. The program 
performs much better with a properly chosen archi-
tecture, the software code is ordered, and the error 
resistance is great.

It is preferable to examine and design the project 
architecture ahead of Ɵ me before beginning a new 

project. In this situaƟ on, the project's complexity, scale, 
version control, and other elements should be defi ned 
so that future development is not hampered. AŌ er all 
of this, the architecture should be properly selected re-
gardless of the project's aim.

Fortunately, numerous methods to project archi-
tecture are available today [2, 4]. It is preƩ y easy to 
disƟ nguish between them, so we can easily select the 
suitable architecture for a certain project. The project's 
structure defi nes the architecture chosen, the future 

https://doi.org/10.35945/gb.2023.15.004


BESIKI TABATADZE | GIORGI ASANIDZE

50 გლობალიზაცია და ბიზნესი #15, 2023

development plan, the number of developers involved, 
and other elements that will contribute to the pro-
gram's future development.

It should be remembered that as programming 
evolves, so does the project’s architecture, which im-
proves even more and becomes more aligned with the 
framework of a given direcƟ on. This enables us to start 
a new project with a carefully chosen programming lan-
guage and an architecture tailored to it.

REVIEWING THE MONOLITH AND MICRO 
SERVICE ARCHITECTURE

Companies are currently deciding between two 
service architectures: monolithic and micro-service 
architecture [1, 2, 3]. The fi rst was a monolithic ar-
chitecture because the services that were sƟ ll being 
generated at the end of the twenƟ eth century did not 
have a disƟ nct structure; the majority of the soŌ ware 
code was included in one project, and the service was 
implemented in accordance with the supplied project. 
In fact, such a confi guraƟ on implies the substance of 
monolithic design. Later, programming development 
necessitated the creaƟ on of new designs, such as mi-
croservice architecture, service-oriented architecture, 
and others[7]. The primary principle of microservice 
architecture is to break the project into porƟ ons based 
on logic, which facilitates control, updaƟ ng, and main-
tenance of independent services.

Correctly picked architecture is critical to the 
future development of the project. If we know that 
the service will not be burdened with several busi-
ness logic and that the modification will be minimal, 
we should select a monolithic design because the 
development process will be much easier and fast-
er, which will help us save resources. And, if we are 
dealing with a huge, dynamic, multifunctional project 
on which numerous teams are working concurrently, 
it is preferable to utilise a microservice design, which 
ensures stability against changes. It should also be 
noted that this design is connected with substantially 
higher expenditures in terms of server infrastructure, 
as well as a much more complex implementation pro-
cedure.

SYNTHESIS OF MONOREPO AND 
MIRCO FRONTEND 

Monorepo is a repository that houses all of the or-
ganisaƟ on’s services, whether they are server-side or 
client-side. Rather than storing services independently, 
a single repository orchestrates all services. A develop-
er can simply access all of their company's service code 
with the help of Monorepo. A developer can easily em-
ploy current soŌ ware code in a task in another service 
using a similar approach. This strategy avoids devel-
oping the same soŌ ware code many Ɵ mes; instead, it 
makes use of exisƟ ng soŌ ware code in the project.

To create Micro Frontend architecture [3, 5, 6], sim-
ilar to the microservices architecture designed for the 
server, massive projects on the client side must also be 
compartmentalised. The creaƟ on and success of mi-
croservice architecture was criƟ cal in the evoluƟ on of 
this strategy. However, compared to microservices, the 
Micro Frontend design is signifi cantly more complex be-
cause it is important to parƟ Ɵ on the visual component 
of the project in such a way that user integrity is not 
breached.

Although the Micro Frontend design provides many 
benefi ts to the development team and is handy for 
project development using rapid, fl exible, and modern 
ways, several issues go against best pracƟ ces. For ex-
ample, having logic replicated in both a server-side ser-
vice and a client-side applicaƟ on when both client-side 
and server-side modules uƟ lise a corresponding proj-
ect-wide common business logic model.

This issue can be adequately solved by integrat-
ing Monorepo with Micro Frontend architecture. This 
method enables us to join numerous services in one 
area, whether it's a web applicaƟ on or an api, and ex-
change codes and components that diff erent services 
share. To do all of this, we must employ the NX system, 
which provides a synthesis of monorepo and Micro 
Frontend architectures, as well as shared libraries.

IMPLEMENTATION OF MICRO FRONTEND 
ARCHITECTURE

Considering the Micro Frontend architecture, we 
can add disƟ nct features in separate web apps. With the 
appropriate command, this strategy can be applied in 
the NX environment [4]. 

Considering the Micro Frontend design, we have 



EDUCATION AND TECHNOLOGY UNDER THE CONDITIONS OF GLOBALIZATION

51GLOBALIZATION AND BUSINESS #15, 2023

the ability to add numerous capabiliƟ es to specifi c web 
apps. With the appropriate command, this strategy can 
be applied in the NX environment.

npx nx g @nrwl/angular:host main – – re-
motes=home,products

where main denotes the main project, which com-
prises all remote web apps, and home and products 
denote remote applicaƟ ons. When you run this com-
mand, the schemaƟ cs in NX will automaƟ cally generate 
the relevant projects and connect them. In the case of 
remote apps, a module-federaƟ on.confi g.js fi le is creat-
ed that contains the remote's name and project adress.

Figure 1. Configuration in Dependent Files.

The names of the remote applicaƟ ons are already 
specifi ed in the module-federaƟ on.confi g.js fi le for the 

host, the main applicaƟ on.

Figure 2. Configuration in Main File.

In terms of how Micro Frontend architecture works, 
remote applicaƟ ons are hosted on mulƟ ple servers 
alongside the main program and are loaded as needed. 
If the user navigates to the Products page in the follow-
ing project example, the main project will load and visu-

alise the matching distant Products. To avoid complicat-
ing the development process, NX ensures that projects 
can be executed on diff erent ports during development. 
The ports' confi guraƟ on is provided in the project.json 
fi le of each remote project.

Figure 3. Port of Main Modules.

When starƟ ng the main project, which is begun 
aŌ er the nx serve command, the NX system starts the 

main project on the default port fi rst, followed by the 
remote projects on other ports.



BESIKI TABATADZE | GIORGI ASANIDZE

52 გლობალიზაცია და ბიზნესი #15, 2023

These graphics demonstrate which projects are run-
ning on which ports. The remote Home project is run-
ning on port 4201, while the Products project is running 
on port 4202.

The web api connecƟ on in the monorepo is accom-
plished through the use of a proxy server; all requests 

made from the web applicaƟ on are routed through the 
proxy server. A proxy.conf.json fi le is produced in the 
web project that uses the web api to obtain and pro-
cess informaƟ on. This fi le contains the corresponding 
confi guraƟ on. /api is a header used in web projects to 
perform api queries, e.g. /api/auth/login.

Figure 4. Ports of Dependent Modules.

Figure 5. Rout of Main API.

CONCLUSION

The expansion of modern technology and the web 
space has resulted in numerous technological advance-
ments in this fi eld. Web projects have grown fairly 
broad and iteraƟ ve, with the emergence of new paths 
that, in addiƟ on to the development of web apps, give 
developers and users the fi nest project management 
methodologies.

When complex systems appeared, tradiƟ onal tech-
nologies and so-called frameworks could no longer do 
the intended tasks. Therefore, new architectures, tech-
nologies, and techniques emerged. Microservice design, 
for example, has easily solved challenges in large-scale 
projects and made their management much easier and 

more fl exible. Similar to the Microservice architecture 
developed for the server-side programming language, 
a new architecture was required for the client-side ap-
plicaƟ on. As a result of all of this, Micro Frontend ar-
chitecture emerged, which played a pivotal part in the 
development of huge projects such as Upwork, IKEA, 
and others.

The exisƟ ng methodologies can deal with the sup-
plied projects now, although changes in the aforemen-
Ɵ oned structures and technologies are probable in the 
future.



EDUCATION AND TECHNOLOGY UNDER THE CONDITIONS OF GLOBALIZATION

53GLOBALIZATION AND BUSINESS #15, 2023

REFERENCES: 

1. Lumetta, J. (20 18, January 18). Monolith vs microservices: which architecture is right for your team? Re-
trieved from Medium: https://medium.com/free-code-camp/monolith-vs-microservices-which-ar-
chitecture-is-right-for-your-team-bb840319d531 

2. Lorenzo De Lauretis (2019, October 30). From Monolithic Architecture to Microservices Architecture: 
https://ieeexplore.ieee.org/abstract/document/8990350

3. Mezzalira, L. (2022). Building Micro-Frontends. Sebastopol: Luca Mezzalira. https://www.sciencedirect.
com/science/article/pii/S0950584921000549#sec1

4. NX Docs. (n.d.). Micro Frontend Architecture. Retrieved from NX Docs: https://nx.dev/more-concepts/
micro-frontend-architecture

5. Pavlenko, A. (2020, May 2). Micro-frontends: application of microservices to web front-ends. Journal of 
Internet Services and Information Security, pp. 49-66. https://jisis.org/wp-content/uploads/2022/11/
jisis-2020-vol10-no2-04.pdf

6. Peltonen, S. (2021, August 13). Motivations, benefi ts, and issues for adopting Micro-Frontends. p. 2.4.

7. Johannes Thönes(2015, January). Microservices https://ieeexplore.ieee.org/abstract/docu-
ment/7030212


